Serveur d'exploration Sulfur Transférase

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Substrate Binding Regulates Redox Signaling in Human DNA Primase.

Identifieur interne : 000196 ( Main/Exploration ); précédent : 000195; suivant : 000197

Substrate Binding Regulates Redox Signaling in Human DNA Primase.

Auteurs : Elizabeth O'Brien [États-Unis] ; Marilyn E. Holt [États-Unis] ; Lauren E. Salay [États-Unis] ; Walter J. Chazin [États-Unis] ; Jacqueline K. Barton [États-Unis]

Source :

RBID : pubmed:30433774

Descripteurs français

English descriptors

Abstract

Generation of daughter strands during DNA replication requires the action of DNA primase to synthesize an initial short RNA primer on the single-stranded DNA template. Primase is a heterodimeric enzyme containing two domains whose activity must be coordinated during primer synthesis: an RNA polymerase domain in the small subunit (p48) and a [4Fe4S] cluster-containing C-terminal domain of the large subunit (p58C). Here we examine the redox switching properties of the [4Fe4S] cluster in the full p48/p58 heterodimer using DNA electrochemistry. Unlike with isolated p58C, robust redox signaling in the primase heterodimer requires binding of both DNA and NTPs; NTP binding shifts the p48/p58 cluster redox potential into the physiological range, generating a signal near 160 mV vs NHE. Preloading of primase with NTPs enhances catalytic activity on primed DNA, suggesting that primase configurations promoting activity are more highly populated in the NTP-bound protein. We propose that p48/p58 binding of anionic DNA and NTPs affects the redox properties of the [4Fe4S] cluster; this electrostatic change is likely influenced by the alignment of primase subunits during activity because the configuration affects the [4Fe4S] cluster environment and coupling to DNA bases for redox signaling. Thus, both binding of polyanionic substrates and configurational dynamics appear to influence [4Fe4S] redox signaling properties. These results suggest that these factors should be considered generally in characterizing signaling networks of large, multisubunit DNA-processing [4Fe4S] enzymes.

DOI: 10.1021/jacs.8b09914
PubMed: 30433774
PubMed Central: PMC6470046


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Substrate Binding Regulates Redox Signaling in Human DNA Primase.</title>
<author>
<name sortKey="O Brien, Elizabeth" sort="O Brien, Elizabeth" uniqKey="O Brien E" first="Elizabeth" last="O'Brien">Elizabeth O'Brien</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 </wicri:regionArea>
<wicri:noRegion>California 91125 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holt, Marilyn E" sort="Holt, Marilyn E" uniqKey="Holt M" first="Marilyn E" last="Holt">Marilyn E. Holt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 </wicri:regionArea>
<wicri:noRegion>Tennessee 37240 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salay, Lauren E" sort="Salay, Lauren E" uniqKey="Salay L" first="Lauren E" last="Salay">Lauren E. Salay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 </wicri:regionArea>
<wicri:noRegion>Tennessee 37240 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chazin, Walter J" sort="Chazin, Walter J" uniqKey="Chazin W" first="Walter J" last="Chazin">Walter J. Chazin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 </wicri:regionArea>
<wicri:noRegion>Tennessee 37240 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barton, Jacqueline K" sort="Barton, Jacqueline K" uniqKey="Barton J" first="Jacqueline K" last="Barton">Jacqueline K. Barton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 </wicri:regionArea>
<wicri:noRegion>California 91125 </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30433774</idno>
<idno type="pmid">30433774</idno>
<idno type="doi">10.1021/jacs.8b09914</idno>
<idno type="pmc">PMC6470046</idno>
<idno type="wicri:Area/Main/Corpus">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000182</idno>
<idno type="wicri:Area/Main/Curation">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000182</idno>
<idno type="wicri:Area/Main/Exploration">000182</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Substrate Binding Regulates Redox Signaling in Human DNA Primase.</title>
<author>
<name sortKey="O Brien, Elizabeth" sort="O Brien, Elizabeth" uniqKey="O Brien E" first="Elizabeth" last="O'Brien">Elizabeth O'Brien</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 </wicri:regionArea>
<wicri:noRegion>California 91125 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holt, Marilyn E" sort="Holt, Marilyn E" uniqKey="Holt M" first="Marilyn E" last="Holt">Marilyn E. Holt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 </wicri:regionArea>
<wicri:noRegion>Tennessee 37240 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salay, Lauren E" sort="Salay, Lauren E" uniqKey="Salay L" first="Lauren E" last="Salay">Lauren E. Salay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 </wicri:regionArea>
<wicri:noRegion>Tennessee 37240 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chazin, Walter J" sort="Chazin, Walter J" uniqKey="Chazin W" first="Walter J" last="Chazin">Walter J. Chazin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 </wicri:regionArea>
<wicri:noRegion>Tennessee 37240 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barton, Jacqueline K" sort="Barton, Jacqueline K" uniqKey="Barton J" first="Jacqueline K" last="Barton">Jacqueline K. Barton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 </wicri:regionArea>
<wicri:noRegion>California 91125 </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the American Chemical Society</title>
<idno type="eISSN">1520-5126</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA (chemistry)</term>
<term>DNA (metabolism)</term>
<term>DNA Primase (chemistry)</term>
<term>DNA Primase (genetics)</term>
<term>DNA Primase (metabolism)</term>
<term>Electrochemical Techniques (methods)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Nucleotides (chemistry)</term>
<term>Nucleotides (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Domains (MeSH)</term>
<term>Transcription Elongation, Genetic (MeSH)</term>
<term>Transcription Initiation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (composition chimique)</term>
<term>ADN (métabolisme)</term>
<term>DNA primase (composition chimique)</term>
<term>DNA primase (génétique)</term>
<term>DNA primase (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Initiation de la transcription (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Nucléotides (composition chimique)</term>
<term>Nucléotides (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Techniques électrochimiques (méthodes)</term>
<term>Élongation de la transcription (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>DNA Primase</term>
<term>Iron-Sulfur Proteins</term>
<term>Nucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA</term>
<term>DNA Primase</term>
<term>Iron-Sulfur Proteins</term>
<term>Nucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN</term>
<term>DNA primase</term>
<term>Ferrosulfoprotéines</term>
<term>Nucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>DNA primase</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrochemical Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN</term>
<term>DNA primase</term>
<term>Ferrosulfoprotéines</term>
<term>Nucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Techniques électrochimiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Protein Binding</term>
<term>Protein Domains</term>
<term>Transcription Elongation, Genetic</term>
<term>Transcription Initiation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Humains</term>
<term>Initiation de la transcription</term>
<term>Liaison aux protéines</term>
<term>Oxydoréduction</term>
<term>Élongation de la transcription</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Generation of daughter strands during DNA replication requires the action of DNA primase to synthesize an initial short RNA primer on the single-stranded DNA template. Primase is a heterodimeric enzyme containing two domains whose activity must be coordinated during primer synthesis: an RNA polymerase domain in the small subunit (p48) and a [4Fe4S] cluster-containing C-terminal domain of the large subunit (p58C). Here we examine the redox switching properties of the [4Fe4S] cluster in the full p48/p58 heterodimer using DNA electrochemistry. Unlike with isolated p58C, robust redox signaling in the primase heterodimer requires binding of both DNA and NTPs; NTP binding shifts the p48/p58 cluster redox potential into the physiological range, generating a signal near 160 mV vs NHE. Preloading of primase with NTPs enhances catalytic activity on primed DNA, suggesting that primase configurations promoting activity are more highly populated in the NTP-bound protein. We propose that p48/p58 binding of anionic DNA and NTPs affects the redox properties of the [4Fe4S] cluster; this electrostatic change is likely influenced by the alignment of primase subunits during activity because the configuration affects the [4Fe4S] cluster environment and coupling to DNA bases for redox signaling. Thus, both binding of polyanionic substrates and configurational dynamics appear to influence [4Fe4S] redox signaling properties. These results suggest that these factors should be considered generally in characterizing signaling networks of large, multisubunit DNA-processing [4Fe4S] enzymes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30433774</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5126</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>140</Volume>
<Issue>49</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Chemical Society</Title>
<ISOAbbreviation>J Am Chem Soc</ISOAbbreviation>
</Journal>
<ArticleTitle>Substrate Binding Regulates Redox Signaling in Human DNA Primase.</ArticleTitle>
<Pagination>
<MedlinePgn>17153-17162</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jacs.8b09914</ELocationID>
<Abstract>
<AbstractText>Generation of daughter strands during DNA replication requires the action of DNA primase to synthesize an initial short RNA primer on the single-stranded DNA template. Primase is a heterodimeric enzyme containing two domains whose activity must be coordinated during primer synthesis: an RNA polymerase domain in the small subunit (p48) and a [4Fe4S] cluster-containing C-terminal domain of the large subunit (p58C). Here we examine the redox switching properties of the [4Fe4S] cluster in the full p48/p58 heterodimer using DNA electrochemistry. Unlike with isolated p58C, robust redox signaling in the primase heterodimer requires binding of both DNA and NTPs; NTP binding shifts the p48/p58 cluster redox potential into the physiological range, generating a signal near 160 mV vs NHE. Preloading of primase with NTPs enhances catalytic activity on primed DNA, suggesting that primase configurations promoting activity are more highly populated in the NTP-bound protein. We propose that p48/p58 binding of anionic DNA and NTPs affects the redox properties of the [4Fe4S] cluster; this electrostatic change is likely influenced by the alignment of primase subunits during activity because the configuration affects the [4Fe4S] cluster environment and coupling to DNA bases for redox signaling. Thus, both binding of polyanionic substrates and configurational dynamics appear to influence [4Fe4S] redox signaling properties. These results suggest that these factors should be considered generally in characterizing signaling networks of large, multisubunit DNA-processing [4Fe4S] enzymes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>O'Brien</LastName>
<ForeName>Elizabeth</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holt</LastName>
<ForeName>Marilyn E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salay</LastName>
<ForeName>Lauren E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chazin</LastName>
<ForeName>Walter J</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Departments of Biochemistry and Chemistry, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37240 , United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barton</LastName>
<ForeName>Jacqueline K</ForeName>
<Initials>JK</Initials>
<Identifier Source="ORCID">0000-0001-9883-1600</Identifier>
<AffiliationInfo>
<Affiliation>Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM008320</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007616</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM118089</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 OD023680</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM126904</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Chem Soc</MedlineTA>
<NlmUniqueID>7503056</NlmUniqueID>
<ISSNLinking>0002-7863</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D019915">DNA Primase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C525356">DNA primase p58 subunit, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C000609421">PRIM1 protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019915" MajorTopicYN="N">DNA Primase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055664" MajorTopicYN="N">Electrochemical Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061805" MajorTopicYN="N">Transcription Elongation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061785" MajorTopicYN="N">Transcription Initiation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30433774</ArticleId>
<ArticleId IdType="doi">10.1021/jacs.8b09914</ArticleId>
<ArticleId IdType="pmc">PMC6470046</ArticleId>
<ArticleId IdType="mid">NIHMS999885</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1993 Mar 30;32(12):3027-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7681326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Oct;39(18):8187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Feb 6;426(3):558-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24239947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 Dec 20;139(50):18339-18348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29166001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13684-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(4):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Sep;14(9):875-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 May 6;291(19):10006-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26975377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Apr 02;2:e00482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Nov 27;8(1):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22119860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2018 Aug;10(8):873-880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29915346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Dec 15;268(35):26179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8253737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 Sep 13;139(36):12784-12792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28817778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Sep 20;128(37):12082-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16967954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2017 Mar 14;33(10):2523-2530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28219007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Jan;16(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Feb 24;355(6327):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jun 25;141(7):1262-1262.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20603006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1907-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14594808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 30;318(5855):1464-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Nov;25(11):572-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11084371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Feb 27;290(9):5635-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25550159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 May 16;28(10):4450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2548577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 May;1804(5):1180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:417-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19720997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Apr 30;136(17):6470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24738733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Oct 19;133(41):16378-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21939244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2013 Jul 01;5(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1999 Feb;6(2):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10021416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Dec 15;27(24):4830-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10572185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Jun 14;44(23):8397-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15938629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Mar 3;132(8):2769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20131780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Aug 14;135(32):11869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23899026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Sep 28;38(39):12899-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Apr 09;5(4):e10083</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2001;70:39-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2007 Sep 1;6(9):1333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17475573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2011 Mar;3(3):228-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21336329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2017;595:361-390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28882207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Aug 1;277(5326):653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9235882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13186-13191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30541886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 16;282(46):33444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Jun 15;38(24):7727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10387012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Apr 16;41(15):4891-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11939784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="O Brien, Elizabeth" sort="O Brien, Elizabeth" uniqKey="O Brien E" first="Elizabeth" last="O'Brien">Elizabeth O'Brien</name>
</noRegion>
<name sortKey="Barton, Jacqueline K" sort="Barton, Jacqueline K" uniqKey="Barton J" first="Jacqueline K" last="Barton">Jacqueline K. Barton</name>
<name sortKey="Chazin, Walter J" sort="Chazin, Walter J" uniqKey="Chazin W" first="Walter J" last="Chazin">Walter J. Chazin</name>
<name sortKey="Holt, Marilyn E" sort="Holt, Marilyn E" uniqKey="Holt M" first="Marilyn E" last="Holt">Marilyn E. Holt</name>
<name sortKey="Salay, Lauren E" sort="Salay, Lauren E" uniqKey="Salay L" first="Lauren E" last="Salay">Lauren E. Salay</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/SulfurTransferaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000196 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000196 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    SulfurTransferaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30433774
   |texte=   Substrate Binding Regulates Redox Signaling in Human DNA Primase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30433774" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SulfurTransferaseV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 14:58:45 2020. Site generation: Sat Nov 21 14:59:12 2020